
Appendix A. Supplementary appendix

In this appendix, we prove the main propositions and theorems in the main text. Auxiliary technical

lemmas that require significant derivation will be proved in a subsequent appendix.

Appendix A.1. Low-dimensional

We begin first with covariance inequalities for τ -mixing variables which will be used throughout our proofs

and the existence of the long-run variance.

Lemma A.1. Under the assumptions A.2 and A.3, for every h, i, j = 1, ...,m, k ≥ 0,

(i) we have,

[Γk,h(t/T )]i,j = |Cov(Xtiν
h
t , Xt+k,jν

h
t+k)| ≤ 2

1
R−1 τ

∗R−2
R−1

k ∥Xtiν
h
t ∥

R−1
R

R ∥Xt+k,jν
h
t+k∥R < ∞,

where R > 2 and τ∗k are defined in assumption A.3;

(ii) Furthermore, set R̃ ∈ (2, q/2] for q > 4, then we have

|Cov(XtiXtj , Xt+k,iXt+k,j)| ≤ 2
1

R̃−1 τ
R̃−2
R̃−1

k ∥XtiXtj∥
R̃−1
R̃

R̃
∥Xt+k,iXt+k,j∥R̃ < ∞;

(iii) Additionally, Ωh(τ) =
∑∞

k=−∞ Γk,h(τ) < ∞.

Proof. Both parts (i) and (ii) correspond to Lemma C.3 and C.4 of Chen and Maung (2025) while part

(iii) is similar to Lemma A.5 of the aforementioned paper and relies on part (i).

Proof of Proposition 1

The following proof strategy is similar to the low-dimensional case in Chen and Maung (2023) but

we deviate on at least two fronts: we do not use the reflection method which changes the bounds of our

summations, and we rely on τ -mixing instead of β-mixing. The decision not to use the reflection approach

is context-specific. Here, we are not interested in real-time out-of-sample forecasting as in the mentioned

paper, but rather accurate in-sample estimation of impulse responses hence we use local information

available prior to and after time t. This is similar to a symmetric rolling window approach centered on t

that is common in estimating time-varying coefficients in macroeconomics and finance.

To continue, we establish a convenient representation of the local linear estimator. Note that we

evaluate our estimator at a fixed given horizon h. Rewrite:

θ̂ht
(2m×1)

=

S0(t/T ) S⊤
1 (t/T )

S1(t/T ) S2(t/T )

−1 Rh
0(t/T )

Rh
1(t/T )

 ≡ S(t/T )−1Rh(t/T )
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where

Sj(t/T )
(m×m)

= T−1
T−h∑
s=1

XsX
⊤
s

(
s− t

T

)j

ks,t,

Rh
j (t/T )
(m×1)

= T−1
T−h∑
s=1

Xsys+h

(
s− t

T

)j

ks,t.

Note that we do not index S(t/T ) by h as even though the horizon appears in the summation, it is non-

asymptotic under our framework. As a general rule, we index a quantity with the horizon if it contains

yt+h, v
h
t or the local projection parameters, which are indeed objects that vary with the horizon. Define

the following quantities:

rhj (t/T )
(m×1)

= T−1
T−h∑
s=1

Xsν
h
s

(
s− t

T

)j

ks,t

Qh
s,t

(m×1)

= γh
( s

T

)
− γh

(
t

T

)
−
(
s− t

T

)
γh

′
(

t

T

)
− 1

2

(
s− t

T

)2

γh
′′
(

t

T

)
,

Dh
j (t/T )
(m×1)

= T−1
T−h∑
s=1

XsX
⊤
s

(
s− t

T

)j

ks,tQ
h
s,t,

Bh
j (t/T )
(m×1)

=
1

2
Sj+2(t/T )γ

h′′
(t/T ),

then by substituting in ys+h with the local projection and the Taylor remainder Qh
s,t, we have the following

expansion:

θ̂ht − θht = S(t/T )−1{rh(t/T ) +Bh(t/T ) +Dh(t/T )}, (A.1)

where

rh(t/T ) = (rh0 (t/T )
⊤, rh1 (t/T )

⊤)⊤

Bh(t/T ) = (Bh
0 (t/T )

⊤, Bh
1 (t/T )

⊤)⊤

Dh(t/T ) = (Dh
0 (t/T )

⊤, Dh
1 (t/T )

⊤)⊤.

The proof is facilitated with the following lemmas applied to (A.1). Their derivations are postponed to

Section B.

Lemma A.2. Under the conditions of Proposition 1, we have for all t and h:

b−jSj(t/T ) = µjM(t/T ){1 + op(1)},

and

b−jDh
j (t/T ) = op(b

2).
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Lemma A.3. Under the conditions of Proposition 1, for all t and h we have

TbV ar(B−1rh(t/T )) = Ω̃h(t/T ) + o(1),

where Ω̃h(t/T ) = diag{ν0Ωh(t/T ), ν2Ωh(t/T )}, B = diag{I(m×m), bI(m×m)} and νj =
∫
ujK(u)du.

Lemma A.4. Under the conditions of Proposition 1, we have for all t and h,

√
TbB−1rh(t/T ) →d N(0, Ω̃h(t/T )).

We are now ready to complete the proof. Firstly, by Lemma A.2 and noting that µ1 = 0 by the

symmetry of the kernel,

S(t/T )−1 →p

M(t/T ) 0

0 b2µ2M(t/T )

−1

= B−1M̃−1(t/T )B−1,

where M̃(t/T ) = diag{M(t/T ), µ2M(t/T )}. Next, we also have

Bh(t/T ) =

 b2

2 µ2M(t/T )γh
′′
(t/T )

b3

2 µ3M(t/T )γh
′′
(t/T )

 {1 + op(1)} =

 b2

2 µ2M(t/T )γh
′′
(t/T )

0

 {1 + op(1)},

where µ3 = 0. Therefore

B−1Bh(t/T ) =

 b2

2 µ2M(t/T )γh
′′
(t/T )

0

+ op(b
2).

Next, note that we have the same rate for B−1Dh(t/T ) = op(b
2). Therefore,

B(θ̂ht − θht )−

 b2

2 µ2γ
h′′
(t/T )

0

+ op(b
2) ≈ M̃−1(t/T )B−1rh(t/T ).

The proof is then complete by multiplying throughout by
√
Tb and applying Lemma A.4 to the right

hand side.

To rigorously prove Proposition 2, we first, define

Zt1,t2,t3,t4 ≡ Xt1,iXt1,i
′Xt2,jXt2,j

′Xt3,aν
h
t3Xt4,bν

h
t4 ,

where Xti,a refers to the ath element of Xti , and we require the following conditions:

Assumption V: Let R = 2(1 + ϱ) > 2 for ϱ > 0, then (i) for all i, j, i′, j′ = 1, ...,m and s, t = 1, ..., T ,

∥Xs,iXs,jXt,i′Xt,j′∥8(1+ϱ) < ∞ and ∥Xs,iXt,jν
h
s ν

h
t ∥8(1+ϱ) < ∞; and (ii) For t1, t2, t3, t4 ∈ Z, {Zt1,t2,t3,t4} is

τ -mixing with coefficients given by τ̃k = O(k−θ) and θ > 5(R− 1)/(R− 2).
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We remark that the moment assumptions are similar to assumption T2 of Cai et al. (2022) albeit

stronger as the local projection error is serially correlated and not independent of the regressors. Hence,

the expectations of their products need to be adequately controlled. Additionally, note that since Xt can

include an intercept term, the above condition can be reduced to simpler combinations of Xt and νht . In

fact, Assumptions A.3 and A.4 can be nested in here. The assumption on mixing is not restrictive and

can be replaced with geometric mixing. We now begin with the proof:

Proof of Proposition 2

Firstly,

Ω̂h(t/T )−Ωh(t/T )

=

[
b

Tν0

(
T−h∑
s=1

Xsν̂
h
s ks,t

)(
T−h∑
s=1

Xsν̂
h
s ks,t

)⊤

− b

Tν0

(
T−h∑
s=1

Xsν
h
s ks,t

)(
T−h∑
s=1

Xsν
h
s ks,t

)⊤ ]

+

[
b

Tν0

(
T−h∑
s=1

Xsν
h
s ks,t

)(
T−h∑
s=1

Xsν
h
s ks,t

)⊤

− Ωh(t/T )

]
≡ Ω1t +Ω2t.

We start with the first term which represents the estimation error of νhs . We can further decompose this

into the following three terms

Ω1t =
b

Tv0

T−h∑
s=1

T−h∑
r=1

[ks,tkr,t(ν̂
h
s − νhs )ν

h
rXsX

⊤
r ] +

b

Tv0

T−h∑
s=1

T−h∑
r=1

[ks,tkr,tν
h
s (ν̂

h
r − νhr )XsX

⊤
r ]

+
b

Tv0

T−h∑
s=1

T−h∑
r=1

[ks,tkr,t(ν̂
h
s − νhs )(ν̂

h
r − νhr )XsX

⊤
r ]

≡ Ω11t +Ω12t +Ω13t.

Next, from the proof of Proposition 1

γ̂ht − γht = M−1
t

[
rh0,t +

1

2
b2µ2Mtγ

h′′
t

]
+ op

(
(Tb)−1/2 + b2

)
.

where we have labeled M(t/T ) = Mt for convenience and similarly for rh0,t and γh
′′

t . Next, we focus on

the (i, j)th element of Ω11t and its leading term is given by

b

Tv0

T−h∑
s=1

T−h∑
r=1

[
ks,tkr,t

(
−X⊤

s

[
M−1

s

{
T−1

T−h∑
l=1

Xlν
h
l kl,s +

1

2
b2Msγ

′′
s

}])
νhrXs,iXr,j

]
≡ Ω̃11t,A + Ω̃11t,B.

4



We analyze the term related to the stochastic error (ignoring the −1 multiple):

[Ω̃11t,A](i,j) =
b

T 2v0

T−h∑
s=1

T−h∑
r=1

T−h∑
l=1

ks,tkr,tkl,s(X
⊤
s M−1

s Xl)ν
h
l ν

h
rXs,iXr,j

=
b

T 2v0

T−h∑
s=1

T−h∑
r=1

T−h∑
l=1

ks,tkr,tkl,s(
m∑
a=1

m∑
b=1

ms,(a,b)Xs,aXl,b)ν
h
l ν

h
rXs,iXr,j ,

where ms,(a,b) is the (a, b)th element of M−1
s . Since m is finite, we focus on a specific (a, b) pair for

simplicity (i.e. ignore the summation over a and b).

We consider the following cases:

[Ω̃11t,A](i,j) =
b

T 2ν0

T−h∑
s=1

k2s,tks,sms,(a,b)Xs,aXs,bXs,iXs,jν
h2
s (s = l =r)

+
b

T 2ν0

T−h∑
s=1

T−h∑
r=1

s ̸=r

ks,tkr,tks,sms,(a,b)Xs,aXs,bXs,iXr,jν
h
s ν

h
r (s = l ̸= r)

+
b

T 2ν0

T−h∑
s=1

T−h∑
l=1

s ̸=l

k2s,tkl,sms,(a,b)Xs,aXl,bXs,iXs,jν
h
s ν

h
l (s = r ̸= l)

+
b

T 2ν0

T−h∑
s=1

T−h∑
l=1

s ̸=l

ks,tkl,tkl,sms,(a,b)Xs,aXl,bXs,iXl,jν
h2
l (l = r ̸= s)

+
b

T 2v0

∑
s ̸=l ̸=r

ks,tkr,tkl,sms,(a,b)Xs,aXl,bXs,iXr,jν
h
l ν

h
r

≡ Ω(1) +Ω(2a) +Ω(2b) +Ω(2c) +Ω(3).

We start with Ω(1),

E[|Ω(1)|] ≤ C

T 2b2

T−h∑
s=1

E[|Xs,aXs,bXs,iXs,jν
h2
s |] = O

(
1

Tb

)
,

where the expectation exists via Cauchy–Schwarz inequality and Assumption V above. Hence, Ω(1) →p 0.

We next focus on Ω(3) as the approach for the other terms are similar. We start with the second

moment and for cleaner notation, we re-define the indices as such:

E
(
{Ω(3)}2

)
=

b2

T 4ν20

∑
s1 ̸=s2 ̸=s3

∑
s4 ̸=s5 ̸=s6

ks1,tks3,tks2,s1ks4,tks6,tks5,s4︸ ︷︷ ︸
≡ks1,...,s6

ms1,(a,b)ms4,(a,b)︸ ︷︷ ︸
≤C

× E[Xs1,aXs1,iXs2,bν
h
s2Xs3,jν

h
s3 ·Xs4,aXs4,iXs5,bν

h
s5Xs6,jν

h
s6 ].

Without loss of generality, consider the case s1 < ... < s6, and let d1 represent the first largest distance

among ∆sz+1 = sz+1 − sz for z = 1, ..., 5. Similar to the strategy in Atak et al. (2025), we consider the
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subcase where d1 = ∆s2 (i.e. the first gap is the largest), then by an application of Lemma A.1 and

Assumption V, we have for a ϱ > 0 and R = 2(1 + ϱ):∣∣∣E ({Ω(3)}2
)∣∣∣ ≤ Cb2

T 4ν20

∑
s1<...<s6
d1=∆s2

ks1,...,s6

∣∣∣E[Xs1,aXs1,i]E[Xs2,bν
h
s2Xs3,jν

h
s3 ·Xs4,aXs4,iXs5,bν

h
s5Xs6,jν

h
s6 ]
∣∣∣

+
2

1
R−1Cb2

T 4ν20

T−5∑
s1=1

T−5−s1+1∑
d1=1

s1+2d1∑
s3=s1+d1+1

s3+d1∑
s4=s3+1

s4+d1∑
s5=s4+1

min{s5+d1,T}∑
s6=s5+1

ks1,...,s6 τ̃
R−2
R−1

d1
∥Xs1,aXs1,i∥

R−1
R

R

× ∥Xs2,bν
h
s2Xs3,jν

h
s3Xs4,aXs4,iXs5,bν

h
s5Xs6,jν

h
s6∥R

≡ O1 +O2

Even though we do not have an m.d.s. assumption on the error terms, we can show (although tediously)

that the O1 is o(1) through repeated use of the mixing inequality. For O2 note that by Assumption V,

∥Xs1,aXs1,i∥R is bounded and by repeated Hölder’s inequality we have:

∥Xs2,bν
h
s2Xs3,jν

h
s3Xs4,aXs4,iXs5,bν

h
s5Xs6,jν

h
s6∥2(1+ϱ)

≤ ∥Xs2,bν
h
s2Xs3,jν

h
s3∥4(1+ϱ) · ∥Xs4,aXs4,i∥8(1+ϱ)∥Xs5,bν

h
s5Xs6,jν

h
s6∥8(1+ϱ) < ∞.

Next, ks1,...,s6 = O(1/b6) ·K( s1−t
T b ), and hence for some constants c1, c2 > 0

O2 ≤
c1

(Tb)4ν20

T∑
s=1

K

(
s− t

T b

) ∞∑
d1=1

d41τ̃
R−2
R−1

d1
≤ c1

(Tb)4ν20

T∑
s=1

K

(
s− t

T b

)
c2 = O

(
1

(Tb)3

)
= o(1),

where the second inequality follows from the condition on the mixing coefficient.

This can be generalized to the other subcases where d1 = ∆sz+1 for z = 2, ..., 5. For example, when

z = 2, the analogous summation for O2 can be written as:

2
1

R−1Cb2

T 4ν20

T−4∑
s2=2

T−s2−3∑
d1=2

s2−1∑
s1=max{s2−d1+1,1}

s2+2d1∑
s4=s2+d1+1

s4+d1∑
s5=s4+1

min{s5+d1,T}∑
s6=s5+1

ks1,...,s6 τ̃
R−2
R−1

d1
∥Xs1,aXs1,iXs2,bν

h
s2∥

R−1
R

R

× ∥Xs3,jν
h
s3Xs4,aXs4,iXs5,bν

h
s5Xs6,jν

h
s6∥R,

which can also be shown to be O(1/(Tb)3) as previously.

Hence, we conclude that Ω1t = op(1). For Ω2t, in light of the result in Lemma A.3, we just need to

show that E(Ω2
2t) → 0 to invoke Chebyshev’s inequality. The proof strategy for this is repetitive and very

similar to our derivation of E((Ω(3))2).

Appendix A.2. High-dimensional

Before starting the proof of Theorem 1, we require the following lemmas (whose proofs are postponed to

Appendix B):
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Lemma A.5. Under the conditions of Theorem 1, with probability at least 1 − Q∗
T where Q∗

T → 0 as

T → ∞, we have for any v ∈ R2(m−1) such that the |{j : vj ̸= 0}| ≤ sT ,

κ∗∥v∥22 ≤
sT
Tb

∥Ztv∥2Kt
,

where κ∗ > 0 and ∥ · ∥Kt , Zt and Kt are defined in Assumption H.2(ii).

Lemma A.6. Under the conditions of Theorem 1,

(i) we have

P

(
max

1≤j≤2(m−1)

∣∣∣∣∣ 1√
Tb

T−h∑
s=1

K

(
s− t

T b

)
z̃s,t,je

⋆
s

∣∣∣∣∣ ≤ c

√
log

(
8mT

δ1

))
≥ 1− δ1

where z̃s,t,j is the jth element of z̃s,t = (z⊤s , z
⊤
s (s− t)/Tb)⊤, e⋆s refers to either e1s or νhs , 0 < δ < 1

and c > 0;

(ii) Furthermore,

P

(
max

1≤j≤2(m−1)

∣∣∣∣ 1Tb
T−h∑
s=1

K

(
s− t

T b

)(
Y (i)
s − a

o,h(i)⊤
0,t zs − ba

o,h(i)⊤
1,t

(
s− t

T b

)
zs

)
z̃s,t,j

∣∣∣∣
≤ c

[(
mT

δ2(Tb)κ−1

)1/κ
∨
√

log(24mT /δ2)

Tb
∨ mT

δ2(Tb)1/2

])
≥ 1− δ2,

where Y
(i)
s is a placeholder that refers to either Y

(1)
s = εs or Y

(2)
s = ys+h and a

o,h(1)
j,t refers to the

true parameters in the unpenalized regression model in (14) for j = 0, 1 while a
o,h(2)
j,t refers to the

corresponding parameters in (15). Here, κ = ((φ∗ + 1)R∗ − 1)/(φ∗ +R∗ − 1) > 2 and R∗ > 2.

Lemma A.7. Let θ̌
h(i)
t ∈ R2(mT−1) be the local linear Lasso estimator to (14) if i = 1 and to (15) if i = 2.

Then we have, under the conditions of Theorem 1, and with probability at least 1−QT − δ2:

∥θ̌h(i)t − θ
o,h(i)
t ∥2 ≤

C

κ

√
sTλ, and (Tb)−1/2∥Zt(θ̌

h(i)
t − θ

o,h(i)
t )∥Kt ≤

C√
κ

√
sTλ,

where θ
o,h(i)
t refers to the corresponding true parameters, κ is from assumption H.2(ii), λ is from Assump-

tion H.1(ii), and QT is from Assumption H.2.

Note that we will let both δ1 = δ1(T ) → 0 and δ2 ≡ δ2(T ) → 0 as T → ∞ slowly. This can be done

for example by setting it to be 1/ log(Tb).

Proof of Theorem 1

Our proof strategy is similar to Belloni et al. (2014) and Hecq et al. (2023) but is more complicated due

to the nonparametric estimation. Recall that our model is (11) and the post-double selection estimator

is given in (16).
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We first begin with some definitions. Let ε̃s,t = (εs, ((s− t)/Tb)εs)
⊤ and z̃s,t = (z⊤s , ((s− t)/Tb)z⊤s )

⊤.

We obtain the data matrices ε̃t and Zt by stacking the vectors over the time sample which results in a

(T−h)×2 vector and (T−h)×2(mT−1) matrix respectively. Let S be the index set of the variables selected

in the double selection procedure (i.e. I1∪I2) and their gradient terms (the interaction with time). Then,

label the sub-matrix of selected variables (corresponding to the columns of Zt whose indices are in S) as

ZS
t . For an arbitrary matrix Z, denote the (weighted) projection matrix as PW (Z) = Z(Z⊤WZ)−1Z⊤W

and the (weighted) annihilator matrix MW (Z) = I −PW (Z). Note that MW (·) is no longer symmetric,

but still idempotent. Construct the following 1× (T − h) vector:

At = e0⊤1 (ε̃⊤t b
−1KtMKt(ZS

t )ε̃t)
−1ε̃⊤t b

−1KtMKt(ZS
t ),

where e01 is a 2 × 1 vector with 1 in the first position and 0 in its second and Kt is a (T − h) × (T − h)

diagonal matrix with {K((s− t)/(Tb))}T−h
s=1 as the diagonal elements.

Then our local linear (partially) partitioned regression estimator of the impulse response at time t for

horizon h is given by:

√
Tb(β̌h

t − βh
t ) =

√
TbAt[Ztθ

h
−e,t + νh] +

√
Tb

b2

2
AtQtθ

′′h(t/T ) +
√
TbAtrs,t

where θh−e,t = (ϑ̃h(t/T )⊤, bϑ̃′h(t/T )⊤)⊤, Qt is the stacked matrix of (εs(
(s−t)
Tb )2, z⊤s (

(s−t)
Tb )2), θ′′h(t/T ) is

the second derivative of all the coefficients of the model, and rs,t is the Taylor remainder. Rearranging

terms around,

√
Tb

(
β̌t − βh

t − b2

2
AtQtθ

′′h(t/T )

)
=

√
TbAt[Ztθ

h
−e,t + νh] +

√
TbAtrs,t ≡ I +

√
Tbrs,t.

The remainder term is of smaller order (rs,t = o(b2)) and thus we focus on the leading terms. We

have:

I = e⊤1 (ε̃⊤t KtMKt(ZS
t )ε̃t/Tb)

−1︸ ︷︷ ︸
≡I−1

N

ε̃⊤t KtMKt(ZS
t )[Ztθ

h
−e,t + νh]/

√
Tb︸ ︷︷ ︸

≡ID

.

We start with ID:

ID = ε̃⊤t KtMKt(ZS
t )Ztθ

h
−e,t/

√
Tb+ ε̃⊤t KtMKt(ZS

t )ν
h/
√
Tb ≡ ID1 + ID2.

Note that

ID1
(2×1)

=

 ε⊤KtMKt
(
ZS
t

)
Ztθ

h
−e,t/

√
Tb

(dt ◦ ε)⊤KtMKt
(
ZS
t

)
Ztθ

h
−e,t/

√
Tb

 , (A.2)

where ε = (ε1, ..., εT−h)
⊤, dt = (1−t

T b , ...,
T−h−t

T b )⊤, and ◦ denotes element-wise multiplication.
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Now, for the reduced form equation,

εs = ϑ(1)⊤(t/T )zs + ϑ
′(1)⊤(t/T )(

s− t

T
)zs +

b2

2
ϑ

′′(1)⊤(t/T )(
s− t

T b
)2zs + r̃s,t + e1t, (A.3)

where r̃s,t is again the o(b2) Taylor remainder. Plug (A.3) into (A.2). We focus on the first element since

the approach for the second element is the same:

(Tb)−1/2[γ⊤t Z
⊤
t KtMKt

(
ZS
t

)
Ztθ

h
−e,t + η⊤t KtMKt

(
ZS
t

)
Ztθ

h
−e,t + e⊤1 KtMKt

(
ZS
t

)
Ztθ

h
−e,t]

≡ ID11 + ID12 + ID13.

where γt = (ϑ(1)⊤(t/T ), bϑ
′(1)⊤(t/T ))⊤ and ηt contains terms related to the second-order derivative and

the remainder which are smaller by an order of b2. Hence, we focus on the first and last terms. For ID11

by idempotence of MKt(·):

|ID11| ≤
√
Tb∥MKt

(
ZS
t

)
Ztγt/

√
Tb∥Kt∥MKt

(
ZS
t

)
Ztθ

h
−e,t/

√
Tb∥Kt ≡

√
Tb(ID11,1 · ID11,2),

where ∥v∥Kt =
√
v⊤Ktv. Let γ

∗ be the solution to the unweighted noiseless problem minγ:γj=0 for j /∈S ∥Ztγt−

Ztγ∥2. Furthermore, recall that I1 is the index set of selected (level) terms from (14). Let I⋆1 to be index

set containing I1 and their associated gradient terms. Note that I⋆1 ⊆ S, then for conformable vectors v

we have ∥MKt(ZS
t )v∥Kt ≤ ∥MKt(Z

I⋆1
t )v∥Kt . By construction of the weighted annihilator matrix,

ID11,1 ≤ ∥MKt

(
Z

I⋆1
t

)
Ztγt/

√
Tb∥Kt = min

γ:γj=0 for j /∈S
∥Ztγt − Ztγ∥Kt/

√
Tb ≤ ∥Ztγt − Ztγ

∗∥Kt/
√
Tb

≤ ∥Zt(γt − γ̂)∥Kt/
√
Tb ≤ C√

κ

√
sTλ,

where γ̂ is the Lasso estimator from (14). The penultimate inequality is due to the construction of γ∗

and the last inequality is from Lemma A.7 which holds with probability 1− δ2 −QT .

For ID11,2, note that ϑh(2)(t/T ) = βh(t/T )ϑ(1)(t/T ) + ϑ̃h(t/T ), then

θh−e,t =

 ϑ̃h(t/T )

bϑ̃′h(t/T )

 =

 ϑh(2)(t/T )

bϑ′h(2)(t/T )

−

 βh(t/T )ϑ(1)(t/T )

β′h(t/T )bϑ′(1)(t/T )

 ≡ aht − (bht ◦ γt). (A.4)

So,

ID11,2 ≤ ∥MKt
(
ZS
t

)
Zta

h
t /
√
Tb∥Kt + ∥MKt

(
ZS
t

)
Ztγt/

√
Tb∥Kt∥bht ∥Kt .

The second term is ID11,1 while the derivation of the first term is analogous to the derivation of ID11,1

with the main difference being the use of the index set I⋆2 instead. Hence, the first term is upper bounded

by ∥Zt(a
h
t − âht )∥Kt/

√
Tb where âht is the Lasso estimator of (15) which is bounded with high probability

by C√
κ

√
sTλ.
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Next we consider ID13, by (A.4):

|ID13| ≤ |e⊤1 KtMKt
(
ZS
t

)
Zta

h
t /
√
Tb|+ |e⊤1 KtMKt

(
ZS
t

)
Zt(b

h
t ◦ γt)/

√
Tb| ≡ ID13,1 + ID13,2

Since the monotonicity of the annihilator matrix does not necessarily carry over to the ℓ1 case, define

ǎS = argmina:aj=0 for j /∈S ∥Zta
h
t − Zta∥2Kt

and likewise γ̌S = argminγ:γj=0 for j /∈S ∥Ztγt − Ztγ∥2Kt
. Then,

ID13,1 = |e⊤1 KtZt(ǎS − aht )/
√
Tb| ≤ ∥ǎS − aht ∥1∥e⊤1 KtZt/

√
Tb∥∞.

Note that by Lemma A.5, with probability 1 − Q∗
T we get ∥ǎS − aht ∥1 = ∥ǎS − aht ∥2 ≤

√
sT√

κ∗
√
Tb

∥Zt(ǎS −

aht )∥Kt ≤
√
sT√

κ∗
√
Tb

∥Zt(â
h
t − aht )∥Kt where âht is the lasso estimator. And by Lemma A.7 we conclude that

∥ǎS − aht ∥1 ≤ CsTλ. By Lemma A.6 with probability at least 1 − δ1, ∥e⊤1 KtZt/
√
Tb∥∞ ≤ ςT where

ςT = c
√

log(8mT )
δ1

. Hence, with high probability,

ID13,1 ≤ CςT sTλ ≡ ϱT .

Similarly,

ID13,2 ≤
∥∥∥bht ∥∥∥∞ ·

∥∥∥Z⊤
t Kte1/

√
Tb
∥∥∥
∞

· ∥γt − γ̌S∥1 ≤ ϱT .

Now we study ID2 which has a similar expression:

ID2
(2×1)

=

 ε⊤KtM
(
ZS
t

)
νh/

√
Tb

(dt ◦ ε)⊤KtM
(
ZS
t

)
νh/

√
Tb

 .

Again we focus on the first element:

(Tb)−1/2[γ⊤t Z
⊤
t KtMKt

(
ZS
t

)
νh + η⊤t KtMKt

(
ZS
t

)
νh + e⊤1 KtMKt

(
ZS
t

)
νh]

≡ ID21 + ID22 + ID23.

We start with ID21,

|ID21| = |(γ̌S − γt)
⊤Z⊤

t Ktν
h/
√
Tb| ≤ ∥γ̌S − γt∥1∥Z⊤

t Ktν
h/
√
Tb∥∞ ≤ ϱT .

For ID23, we have:

ID23 = e⊤1 Ktν
h/
√
Tb− e⊤1 KtPKt(ZS

t )ν
h/
√
Tb ≡ ID23,1 + ID23,2.

We start with the second term:

|ID23,2| ≤ |e⊤1 KtZ
S
t (Z

S⊤
t KtZ

S
t )

−1ZS⊤
t Ktν

h/
√
Tb|

≤ ∥ZS⊤
t Ktν

h/
√
Tb∥∞ · sT ∥(ZS⊤

t KtZ
S
t /Tb)

−1∥2∥ZS⊤
t Kte1/

√
Tb∥∞/

√
Tb.
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Here we can apply Lemma A.6 twice since ∥ZS⊤
t Ktν

h∥∞ ≤ ∥Z⊤
t Ktν

h∥∞ and likewise for the term with e1.

Furthermore, with high probability, ∥(ZS⊤
t KtZ

S
t /Tb)

−1∥2 is bounded. So |ID23,2| ≤ Cς2T sT /
√
Tb, which

goes to 0 based on our rate assumptions.

Hence our leading term is ID23,1.

For I−1
N we can apply the same approach to show that the leading term is given by (ε̃⊤t Ktε̃t/Tb)

−1.

The procedure is repetitive and we thus omit it.

For the bias term, we write

b2

2
AtQtθ

′′h(t/T ) =
b2

2
e0⊤1 I−1

N [ε̃⊤t KtMKt(ZS
t )Qt/Tb]︸ ︷︷ ︸

IB

θ
′′h(t/T ).

For notational convenience, let MKt(ZS
t ) ≡ MKt , Dt = diag(ds,t) where ds =

s−t
T b , then ε̃t =

[
ε Dε

]
and Q =

[
D2ε D2z

]
. The matrix expression is then given as

IB =
1

Tb

 ε⊤KtMKtD2ε ε⊤KtMKtD2z

(Dε)⊤KtMKtD2ε (Dε)⊤KtMKtD2z

 .

We focus on the (1, 1) block. Since MKt = I − PKt , we have

1

Tb
ε⊤KtMKtD2ε =

1

Tb
ε⊤KtD

2ε−
(

1

Tb
ε⊤KtZ

S
t

)(
1

Tb

(
ZS
t

)⊤
KtZ

S
t

)−1( 1

Tb

(
ZS
t

)⊤
KtD

2ε

)
.

By Lemma A.2, 1
Tbε

⊤KtD
2ε = µ2E[ε2t ] + op(1). Let the variables selected in S be zSt , then the second

term converges to µ2E(εtz
S
t )E(zSt z

S⊤
t )E(zS⊤t εt). The derivation for (1, 2) is similar. For the (2, 1) and

(2, 2) block, they converges to 0 since µ3 = 0 given the symmetric kernels. As explained above the leading

order of I−1
N converges to E(ε2t ) 0

0 µ2E(ε2t )

 .

Therefore, the entire bias term is O(b2).

Finally, we can then apply a variant of Lemma A.4 to ID23,1 to obtain our result.
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Appendix B. Proofs of Lemmas

Proof of Lemma A.2 We focus on j = 0, as the extension to j > 0 is similar.

E

[
T−1

T−h∑
s=1

XsX
⊤
s ks,t

]
= T−1

T−h∑
s=1

M(t/T )ks,t + o(1) (by Lipschitzness of M(·))

= M(t/T )

∫
K(u)du︸ ︷︷ ︸
=1

+o(1) (by Riemann sum approximation).

Note that the second term is o(1) because it is smaller by an order of b. For variance, consider the (i, j)

element of S0:

V ar([S0(t/T )](i,j)) = (Tb)−2
T−h∑
s=1

V ar(XsiXsj)K
2

(
s− t

T b

)
+ 2(Tb)−2

∑
1≤s<l≤T−h

Cov

(
XsiXsjK(

s− t

T b
), XliXljK(

l − t

T b
)

)
.

For the first term,

(Tb)−2
T−h∑
s=1

V ar(XsiXsj)K
2

(
s− t

T b

)
≤ E[(XtiXtj)

2](Tb)−2
T−h∑
s=1

K2

(
s− t

T b

)
+ o(1) = O

(
1

Tb

)
,

where we have again used the Lipschitz condition and the Riemann sum approximation to get
∫
K2(u)du ≤

C < ∞ for some C > 0. Next, let k = l − s, then the second term simplifies to

2

(Tb)2

T−h∑
s=1

T−s−h∑
k=1

K

(
s− t

T b

)
K

(
s+ k − t

T b

)
· Cov (XsiXsj , Xs+k,iXs+k,j)

≤ 2C

(Tb)2

T−h∑
s=1

K

(
s− t

T b

) T−s−h∑
k=1

K

(
s+ k − t

T b

)
τ

R̃−2
R̃−1

k (by Lemma A.1),

where R̃ ∈ (2, q/2]. Note that K((s − t)/Tb) is non-zero if and only if |s − t| ≤ Tb, let St represent the

set of these indices and notice that the cardinality of St is O(Tb). Next, we use the finite bounds on the

kernels to arrive at
2C

Tb

T−s−h∑
k=1

τ
R̃−2
R̃−1

k ≤ 2C

Tb

∞∑
k=1

k
−φ R̃−2

R̃−1 = O(1/(Tb)).

The final equality requires greater exposition. By assumption A.3, τk = O(k−φ) where φ > (q−2)/(q−4)

and q > 4. For summability, we require φ R̃−2
R̃−1

> 1. The worst case is for when R̃−2
R̃−1

is the smallest, which

occurs when R̃ = q/2, hence φ needs to satisfy φ > q−2
q−4 , which is guaranteed by assumption A.3(i). Hence

the infinite sum converges. Therefore, we conclude that V ar([S0(t/T )](i,j)) = o(1) and we get our result

for the first part. For the second result on b−jDh
j (t/T ), the steps are almost exactly the same but with

the additional consideration that Qh
s,t = o(b2).
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Proof of Lemma A.3 Since we have a block diagonal setup, we focus on each block individually. Recall

that rh(t/T ) = (rh0 (t/T )
⊤, rh1 (t/T )

⊤)⊤ and Γj,h(t/T ) = Cov(Xtν
h
t , Xt+jν

h
t+j). Additionally, we define

Γs,l,h = Γ(s/T, l/T ) = Covh(Xsν
h
s , Xlν

h
l ). Then,

TbV ar(rh0 (t/T )) = T−1b
T−h∑
s=1

Γ0,h(s/T )k
2
s,t + 2T−1b

∑
1≤s<l≤T−h

Γs,l,hks,tkl,t ≡ I1 + I2.

Likewise, by Lipschitz continuity and the Riemann sum approximation we have

I1 = Γ0,h(t/T )

∫
K2(u)du+ o(1).

Moving on to the covariances, we can capture pairs of indices that are asymptotically ’close’. Consider

a sequence gT → ∞ such that gT /(Tb) → 0 and gT /
√
T → 0. We consider the following index sets:

Θ1 = {(s, l) : 1 ≤ s− l ≤ gT for 1 ≤ s < l ≤ T − h} and Θ2 contains the pairs of indices (s, l) that obey

1 ≤ s < l ≤ T − h but are not in Θ1. Then, we have

I2 = 2T−1b
∑

(s,l)∈Θ1

Γs,l,hks,tkl,t + 2T−1b
∑

(s,l)∈Θ2

Γs,l,hks,tkl,t ≡ I21 + I22.

We focus on I22. Consider the (i, j) element of Γs,l,h, then we have

[I22](i,j) = 2T−1b
∑

1≤s<l≤T−h
l−s>gT

Cov(Xsiν
h
s , Xljν

h
l )ks,tkl,t

= 2T−1b
T−h∑

k=gT+1

T−h−k∑
s=1

Cov
(
Xsiν

h
s , X(s+k)jν

h
s+k

)
ks,tks+k,t

≤ 2T−1b
T−h∑

k=gT+1

C0τ
∗R−2
R−1

k

T−h−k∑
s=1

ks,tks+k,t, (B.1)

where we have applied Lemma A.1 with some C0 > 0. Next, we use the boundedness of the kernel to get

ks+k,t ≤ C1/b for some C1 > 0, and T−1
∑T−h−k

s=1 ks,t ≤ T−1
∑T−h

s=1 ks,t ≤ C2. This yields

(B.1) ≤ C
T−h∑

k=gT+1

k−φ∗ R−2
R−1 ≤ C

1

a− 1
g
−(a−1)
T = o(1)

where we have used assumption A.3 for the first inequality and an integral bound for the second. Here,

a = φ∗R−2
R−1 and since φ∗ > R−1

R−2 by construction, we have a > 1 and thus the sum converges to 0 as

gT → ∞.
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Next, for the (i, j) element of I21:

[I21](i,j) = 2T−1b
∑

1≤s<l≤T−h
1≤l−s≤gT

Cov(Xsiν
h
s , Xljν

h
l )ks,tkl,t

= 2T−1b
T−h−1∑
s=1

∑
1≤l−s≤gT

Cov(Xsiν
h
s , Xljν

h
l )ks,tkl,t

= 2T−1b2
T−h−1∑
s=1

k2s,t
∑

1≤l−s≤gT

Cov(Xsiν
h
s , Xljν

h
l )

+ 2T−1b2
T−h−1∑
s=1

∑
1≤l−s≤gT

Cov(Xsiν
h
s , Xljν

h
l )(ks,tkl,t − k2s,t)

= I211 + I212.

Note that as T → ∞, we have I211 → 2
∫
K2(u)du

∑∞
k=1[Γk,h(t/T )](i,j). Next, notice that by the Lipschitz

requirement on the kernel, |kl,t − ks,t| ≤ L1
b |

l−s
Tb | ≤ L gT

Tb2
, then

|I212| ≤ LgTT
−2b−1

T−h−1∑
s=1

ks,t

{ ∞∑
k=1

|[Γk,h(t/T )](i,j)|+ gT b

}
= O

(
gT
Tb

+
g2T
T

)
= o(1)

where we have used Lemma A.1 to yield
∑∞

k=1 |[Γk,h(t/T )](i,j)| = O(1), and the Riemann sum approxima-

tion for ks,t. The o(1) comes from the construction of gT . Therefore, [I21](i,j) → 2ν0
∑∞

k=1[Γk,h(t/T )](i,j).

Together with the result for I1 above, we conclude that

TbV ar(rh0 (t/T )) → ν0

{
Γ0,h(t/T ) + 2

∞∑
k=1

Γk,h(t/T )

}
= ν0Ωh(t/T ).

The same steps can be taken to show that

TbV ar(b−1rh1 (t/T )) → ν2Ωh(t/T ) and TbCov(rh0 (t/T ), b
−1rh1 (t/T )) → ν1Ωh(t/T ) = 0(m×m),

since ν1 =
∫
uK2(u)du = 0 due to symmetry.

Proof of Lemma A.4

Before proceeding, we reproduce the necessary central limit theorem by Neumann (2013) here:

Theorem 2.1 of Neumann (2013) Let (ξT,t)t=1,...,T , T ∈ N be a triangular array of random variables

with E[ξT,t] = 0 and
∑T

t=1E[ξ2T,t] ≤ c0 for all T, t and some c0 < ∞. Assume that as T → ∞, we have

σ2
T ≡ V ar(ξT,1 + ...+ ξT,T ) → σ2 ∈ [0,∞) (B.2)

and
T∑
t=1

E[ξ2T,t1{|ξT,t|>ϵ}] → 0 (B.3)
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for all ϵ > 0. Next, assume that there exists a summable sequence (τk)k∈N such that for all u ∈ N and all

indices 1 ≤ s1 ≤ s2 < ... < su < su + k = j1 ≤ j2 ≤ T , the following covariances are upper-bounded as

such: for all measurable functions g : Ru → R with ∥g∥∞ = supx∈Ru |g(x)| ≤ 1,

|Cov(g(ξT,s1 , ..., ξT,su)ξT,su , ξT,j1)| ≤ (E[ξ2T,su ] + E[ξ2T,j1 ] + T−1)τk (B.4)

and

|Cov(g(ξT,s1 , ..., ξT,su), ξT,j1ξT,j2)| ≤ (E[ξ2T,j1 ] + E[ξ2T,j2 ] + T−1)τk. (B.5)

Then we conclude that

ξT,1 + ...+ ξT,T →d N(0, σ2).

The proof of Lemma A.4 therefore involves verifying the 4 conditions in (B.2)-(B.5). Note that we

can rewrite

v⊤
√
ThB−1rh(t/T ) = v⊤

1√
Tb

T−h∑
s=1

νhsK

(
s− t

T b

) XS(
s−t
T b

)
Xs


︸ ︷︷ ︸

≡Zs,t

,

where we have pre-multiplied the vector by a conformable unit vector v to apply Crámer-Wold. Note

that E[v⊤ 1
Tb

∑T−h
s=1 νhsK( s−t

T b )Zs,t] = 0 by exogeneity.

For (B.2), (B.2) is guaranteed by the existence of the long-run variance in Lemma A.1.

Next to verify (B.3), we will show that

lim
T→∞

T−h∑
s=1

K

(
s− t

T b

)
E

[∣∣∣∣v⊤Zs,tv
h
s√

Tb

∣∣∣∣2 1{| v⊤Zs,tv
h
s√

Tb
|>ϵ}

]
= 0.

Note that this is easy to verify given our moment conditions of Xs and νhs :

E

[∣∣∣∣v⊤Zs,tv
h
s√

Tb

∣∣∣∣2 1{| v⊤Zs,tv
h
s√

Tb
|>ϵ}

]
= E

[∣∣∣∣v⊤Zs,tv
h
s√

Tb

∣∣∣∣2 (ϵϵ)R−2
1
{| v

⊤Zs,tv
h
s√

Tb
|>ϵ}

]

< E

∣∣∣∣v⊤Zs,tv
h
s√

Tb

∣∣∣∣2
(
|v⊤Zs,tv

h
s /

√
Tb|

ϵ

)R−2

1
{| v

⊤Zs,tv
h
s√

Tb
|>ϵ}


≤ E

 |v⊤Zs,tv
h
s |R

Tb

(
|1/

√
Tb|

ϵ

)R−2


=
1

Tb
Tb−(R−2)/2ϵ−(R−2)E[|v⊤Zs,tv

h
s |R],

where R = pq/(p+ q) from assumption A.3. By Hölder’s inequality:

E[|v⊤Zs,tν
h
s |R] ≤ ∥νhs ∥Rp ∥Zs,t∥Rq ≤ C < ∞
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where the bound comes from their moment conditions. Therefore,

T−h∑
s=1

K

(
s− t

T b

)
E

[∣∣∣∣v⊤Zs,tv
h
s√

Tb

∣∣∣∣2 1{| v⊤Zs,tv
h
s√

Tb
|>ϵ}

]
≤ (Tb)−(R−2)/2

ϵ(R−2)

C

Tb

T−h∑
s=1

K(
s− t

T b
)

= O((Tb)−(R−2)/2) = o(1),

since R > 2.

Next, we need only to verify (B.4) since (B.5) follows similarly but relying on assumption A.3(ii).

From Theorem 2.1 of Neumann (2013), we require the following notation: for any u ∈ N, the indices

1 ≤ s1 < s2 < ... < su < su + k ≤ su + k′ < T − h and g : Ru → R with supv∈Ru ∥g(v)∥ ≤ 1. Next, define

the following notations:

Ysu,t = g(v⊤Zs1,tν
h
s1/

√
Tb, v⊤Zs2,tν

h
s2/

√
Tb, ..., v⊤Zsu,tν

h
su/

√
Tb)v⊤Zsu,tν

h
su

Zsu+k,t = v⊤Zsu+k,tν
h
su+k,

Q|Ysu,t| is the quantile function of |Ysu,t|, G|Zsu+k,t| is the generalized inverse of z 7→
∫ z
0 Q|Zsu+k,t|(x)dx, the

information set Fsu
−∞ = σ(Zsu,tν

h
su , Zsu−1,tν

h
su−1, Zsu−2,tν

h
su−2, ...), and the L1-mixingale type coefficient

γ(Fsu
−∞, Zsu+k,t) = ∥E[Zsu+k,t|Fsu

−∞]− E[Zsu+k,t]∥1. Hence, our equivalent of (B.4) is given by:

1

Tb
|Cov(Ysu,t, Zsu+k,t)| ≤

2

Tb

∫ γ(Fsu
−∞,Zsu+k,t)/2

0
Q|Ysu,t| ◦G|Zsu+k,t|(x)dx

≤ 2

Tb

∫ ∥Zsu+k,t∥1

0
1{x<γ(Fsu

−∞,Zsu+k,t)/2}Q|Ysu,t| ◦G|Zsu+k,t|(x)dx

≤ 1

Tb
γ(Fsu

−∞, Zsu+k,t)
R−2
R−1

(∫ ∥Zsu+k,t∥1

0
[Q|Ysu,t| ◦G|Zsu+k,t|(x)]

R−1dx

)1/(R−1)

≤ c

Tb
τ
∗R−2
R−1

k

(∫ 1

0
QR

|Ysu,t|(y)dy

)R−1
R
(∫ 1

0
QR

|Zsu+k,t|(y)dy

)1/R
1/(R−1)

=
c

Tb
τ
∗R−2
R−1

k ∥Ysu,t∥R∥Zsu+k,t∥
1

R−1

R .

We discuss this derivation in detail here. The first inequality is due to the covariance inequality (Propo-

sition 5) of Dedecker and Doukhan (2003). For the second inequality, note that

γ(Fsu
−∞, Zsu+k,t) ≤ ∥E[Zsu+k,t|Fsu

−∞]∥1 + ∥E[Zsu+k,t]∥1 ≤ 2∥Zsu+k,t∥1

by the triangle inequality, and the following inequality is valid by Jensen’s inequality and the law of

iterated expectations for ∥E[Zsu+k,t|Fsu
−∞]∥1 ≤ ∥Zsu+k,t∥1 and ∥E[Zsu+k,t]∥1 ≤ ∥Zsu+k,t∥1. The third
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inequality follows from Hölder’s inequality for R−2
R−1 + 1

R−1 = 1:

2

∫ ∥Zsu+k,t∥1

0
1{x<γ(Fsu

−∞,Zsu+k,t)/2}Q|Ysu,t| ◦G|Zsu+k,t|(x)dx

≤ 2

(∫ γ(Fsu
−∞,Zsu+k,t)/2

0
1dx

)R−2
R−1

(∫ ∥Zsu+k,t∥1

0
[Q|Ysu,t| ◦G|Zsu+k,t|(x)]

R−1dx

) 1
R−1

.

The first term integrates to the upper limit and we note that the relations (2.2.13) and (2.2.18) in

Dedecker et al. (2007) imply that the L1- mixingale coefficient is smaller than the τ -mixing coefficient.

For the second term, it follows from a change of variables where we set x =
∫ y
0 Q|Ysu,t|(e)de such that

du/dy = Q|Ysu,t|(y), and at the upper limit of the integral (∥Zsu+k,t∥1) we have y = 1. Additionally,

by construction of G, we have GZsu+k,t
(
∫ y
0 Q|Ysu,t|(e)de) = y. Subsequently, we apply Hölder’s inequality

again to split the second term. The final equality follows from the property of the quantile function:∫ 1
0 QR

|Ysu,t|(y)dy = E|Y R
su,t| and

∫ 1
0 QR

|Zsu+k,t|(y)dy = E|ZR
su+k,t|.

Next, recall that supv∈Ru ∥g(v)∥ ≤ 1, then

∥Ysu,t∥R ≤ ∥v⊤Zsu,tν
h
su∥R = O(1),

where we have shown this bound earlier in the derivation of condition (B.3). The same can be said for

∥Zsu+k,t∥2. Then by assumption A.3, we have τ∗k = O(k−φ∗
) where φ∗ > (R− 1)/(R− 2) so φ∗ · R−2

R−1 > 1

and τ
∗R−2
R−1

k is summable and (B.4) is satisfied. The approach for (B.5) is more convenient because the first

term in the covariance is given solely by g(·) which is uniformly bounded by 1 and therefore the quantile

function will also be bounded by 1. With this observation, we can show that it will be O((k′ − k)−φ̃/Tb)

where φ̃ > 1 is from assumption A.3(ii). The conditions are therefore satisfied and we can appeal to the

central limit theorem.

Proof of Lemma A.5

The proof relies on assumption H.2(i) and the proof strategy follows that of Lemma A.1 in Hecq et al.

(2023).

Proof of Lemma A.6

We start with part (i). Since {z̃s,t,je⋆s} is τ -mixing, by Theorem 3.1 of Babii et al. (2024), there exists

constants c1, c2 > 0 such that we get

P

(
max

1≤j≤2(m−1)

∣∣∣∣∣ 1√
Tb

T−h∑
s=1

K

(
s− t

T b

)
z̃s,t,je

⋆
s

∣∣∣∣∣ > u

)
≤ 2c1mT

(Tb)1−κ/2

uκ
+ 8mT exp

(
−c2u

2(Tb)

B2
T

)
,

where B2
T = maxj

∑
s

∑
k Cov(z̃s,t,je

⋆
s, z̃k,t,je

⋆
k). By Lemma C.2 of Chen and Maung (2025), B2

T = O(Tb).

Next we invert the probability, so that for any δ1 ∈ (0, 1),

2c1mT
(Tb)1−κ/2

uκ
≤ δ1

2
,
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and

u ≥ C1

(
mT

δ1(Tb)κ/2−1

)
.

Given our assumptions on κ, it is possible to show that it is > 2, hence this fraction goes to 0 as Tb → ∞.

The dominating order comes from the second term because B2
T = O(Tb):

u ≥ C2

√
log(8mT )

δ1
,

which concludes the proof of part (i).

For part (ii),

P

(
max

1≤j≤2(m−1)

∣∣∣∣ 1Tb
T−h∑
s=1

K

(
s− t

T b

)(
Y (i)
s − a

o,h(i)⊤
0,t zs − ba

o,h(i)⊤
1,t

(
s− t

T b

)
zs

)
z̃s,t,j

∣∣∣∣ > u

)

≤
2(mT−1)∑

j=1

P

(∣∣∣∣ 1Tb
T−h∑
s=1

K

(
s− t

T b

)(
Y (i)
s − a

o,h(i)⊤
0,s zs

)
︸ ︷︷ ︸

=e1s or eh2s

z̃s,t,j > u

)

+

2(mT−1)∑
j=1

P

(∣∣∣∣ 1Tb
T−h∑
s=1

K

(
s− t

T b

)(
a
o,h(i)
0,s − a

o,h(i)
0,t − ba

o,h(i)
1,t

(
s− t

T b

))⊤
zs︸ ︷︷ ︸

≡Rs,t,i(zs)

z̃s,t,j

∣∣∣∣ > u

)
≡ P1 + P2.

By a second order Taylor expansion, Rs,t,i(zs) contains b2. Furthermore, due to sparsity, we can show

via Markov’s inequality that the P2 is of order O(mT sT b
2). By assumption H.1(i) sT b

2 ∝ (Tb)−1/2 which

yields the third term in the probability in part (ii) of Lemma A.6 (i.e. this part is due to the local linear

approximation).

For P1, we can repeat the process by applying Theorem 3.1 of Babii et al. (2024) again. The rates are

different now since we have 1/Tb instead of 1/
√
Tb as was the case in part (i) of the proof.

The proof is complete by inverting the probability, this time by setting the rates to be ≤ δ2/3 for

some δ2 ∈ (0, 1).

Proof of Lemma A.7

For ease of notation, we focus on the estimator from (15) since the derivation carries over to the case

with (14).

First, define the difference between the estimator θ̌
h(2)
t = (ǎ

h(2)⊤
0,t , bǎ

h(2)⊤
1,t )⊤ and the true value for the

level and gradient terms as:

djt = ǎ
h(2)
0,t,j − a

o,h(2)
0,t,j and ḋjt = b[ǎ

h(2)
1,t,j − a

o,h(2)
1,t,j ],

for j = 1, ...,mT − 1.

18



It can then be shown that the local linear lasso error satisfies the following constraint:

max


mT−1∑

j=s(2),T+1

|djt|,
mT−1∑

j=s(2),T+1

|ḋjt|

 ≤ b

s(2),T∑
j=1

|djt|+
s(2),T∑
j=1

|ḋjt|

 ,

where b = max{λ(2)
1 /λ

(2)
2 , λ

(2)
2 /λ

(2)
1 } + η̃ and η̃ > 0. This was shown by Li et al. (2015) for the varying-

coefficient model and Chen and Maung (2023) for nonparametric time-varying forecast combinations.

Hence we omit its derivation for brevity.

Define dt = (d1t, ..., dmT−1,t, ḋ1t, ..., ḋmT−1,t)
⊤, then a key implication of this result is the following

cone constraint:

∥dt∥1 = ∥ds(2),Tt ∥1 + ∥d¬s(2),Tt ∥1 ≤ ∥ds(2),Tt ∥1 + b(∥ds(2),Tt ∥1) = (1 + b)∥ds(2),Tt ∥1.

where d
s(2),T
t refers to the difference of the non-zero coefficients and d

¬s(2),T
t is the complement of that

index set.

Next, by definition of the lasso estimator (as a minimizer) to (15) we have:

(Tb)−1∥yh−Ztθ̌
h(2)
t ∥2Kt

+λ
(2)
1 ∥ǎh(2)0,t ∥1+λ

(2)
2 ∥ǎh(2)1,t ∥1 ≤ (Tb)−1∥yh+Ztθ

o,h(2)
t ∥2Kt

+λ
(2)
1 ∥ao,h(2)0,t ∥1+λ

(2)
2 ∥ao,h(2)1,t ∥1,

where yh is the vector of {ys+h}, and Zt and ∥ · ∥Kt are defined in assumption H.2(ii). Then, note that

∥yh − Ztθ̌
h(2)
t ∥2Kt

− ∥yh + Ztθ
o,h(2)
t ∥2Kt

= ∥Zt(θ̌
h(2)
t − θ

o,h(2)
t )∥2Kt

− 2(yh − Ztθ
o,h(2)
t )⊤KtZt(θ̌

h(2)
t − θ

o,h(2)
t ),

hence together with assumption H.1(ii) λ
(2)
1 , λ

(2)
2 ∝ λ:

(Tb)−1∥Zt(θ̌
h(2)
t − θ

o,h(2)
t )∥2Kt

≤ 2(Tb)−1(yh − Ztθ
o,h(2)
t )⊤KtZt(θ̌

h(2)
t − θ

o,h(2)
t ) + λ[∥θ̌h(2)t ∥1 − ∥θo,h(2)t ∥1].

Note that we have

(yh − Ztθ
o,h(2)
t )⊤KtZt(θ̌

h(2)
t − θ

o,h(2)
t ) ≤ ∥Z⊤

t Kt(y
h − Ztθ

o,h(2)
t )∥∞∥θ̌h(2)t − θ

o,h(2)
t ∥1.

Define the event ΛT = {(Tb)−1∥Z⊤
t Kt(y

h − Ztθ
o,h(2)
t )∥∞ ≤ λ}. Note that by Lemma A.6, we have

P (ΛT ) ≥ 1− δ2. We will now assume that ΛT holds and so:

(Tb)−1∥Ztdt∥2Kt
≤ 2λ∥dt∥1 + λ∥dt∥1, (B.6)

where we have used the reverse triangle inequality. By the cone constraint, we have 3λ∥dt∥1 ≤ 3(1 +

b)λ∥ds(2),Tt ∥1. Then by the restricted eigenvalue assumption in H.2(ii), we have

κ∥dt∥22 ≤ (Tb)−1∥Ztdt∥2Kt
,
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which holds with probability 1−QT . Hence

κ∥dt∥22 ≤ 3(1 + b)λ∥ds(2),Tt ∥1 ≤ 3(1 + b)λ
√

s(2),T ∥dt∥2.

So, we have ∥dt∥2 ≤ 3(1+b)
κ

√
sTλ.

Finally from (B.6), (Tb)−1/2∥Ztdt∥Kt ≤ C
κ λ

√
sT .
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