Appendix A. Supplementary appendix

In this appendix, we prove the main propositions and theorems in the main text. Auxiliary technical

lemmas that require significant derivation will be proved in a subsequent appendix.
Appendix A.1. Low-dimensional

We begin first with covariance inequalities for 7-mixing variables which will be used throughout our proofs

and the existence of the long-run variance.
Lemma A.1. Under the assumptions A.2 and A.3, for every h, i,j=1,....m, k>0,
(i) we have,
h h e hy h
Lhn(t/T)ij = 1Cov(Xeiv, Xeqn vy p) | < 27707 " [ Xt | g% ([ Xk jviall R < 00,

where R > 2 and 1} are defined in assumption A.3;

(ii) Furthermore, set R € (2,q/2] for q > 4, then we have
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(iii) Additionally, Qp (1) = po . Trn(T) < 00.

Proof. Both parts (i) and (ii) correspond to Lemma C.3 and C.4 of Chen and Maung (2025) while part

(iii) is similar to Lemma A.5 of the aforementioned paper and relies on part (i). O

Proof of Proposition 1

The following proof strategy is similar to the low-dimensional case in Chen and Maung (2023) but
we deviate on at least two fronts: we do not use the reflection method which changes the bounds of our
summations, and we rely on 7-mixing instead of S-mixing. The decision not to use the reflection approach
is context-specific. Here, we are not interested in real-time out-of-sample forecasting as in the mentioned
paper, but rather accurate in-sample estimation of impulse responses hence we use local information
available prior to and after time ¢. This is similar to a symmetric rolling window approach centered on ¢
that is common in estimating time-varying coefficients in macroeconomics and finance.

To continue, we establish a convenient representation of the local linear estimator. Note that we

evaluate our estimator at a fixed given horizon h. Rewrite:
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Note that we do not index S(¢/T') by h as even though the horizon appears in the summation, it is non-
asymptotic under our framework. As a general rule, we index a quantity with the horizon if it contains
Yein, v or the local projection parameters, which are indeed objects that vary with the horizon. Define

the following quantities:
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then by substituting in ysp with the local projection and the Taylor remainder Q’;t, we have the following

expansion:
oh — 0" = S(t)T)"{r"(t/T) + B"(t/T) + D"(t/T)}, (A1)
where
r"(t)T) = (ry(t)T) T, o (t/T) )"
B"t/T) = (By(t/T)", Bi(t/T)")"

D"(t/T) = (D§(t/T)", Dy (t/T)")".

The proof is facilitated with the following lemmas applied to (A.1). Their derivations are postponed to
Section B.

Lemma A.2. Under the conditions of Proposition 1, we have for all t and h:
bIS;(t/T) = 1wy M(E/T){L + 01},

and

b DI (t/T) = 0,(b°).



Lemma A.3. Under the conditions of Proposition 1, for all t and h we have
ToVar(B~r"(t/T)) = Qu(t/T) + o(1),
where Qu(t)T) = diag{voQu(t/T), e (t/T)}, B = diag{1(yxm)s bl mxm)} and v; = [0/ K (u)du.
Lemma A.4. Under the conditions of Proposition 1, we have for allt and h,
VTbB " (t/T) =% N(0,Q,(¢/T)).

We are now ready to complete the proof. Firstly, by Lemma A.2 and noting that uy = 0 by the

symmetry of the kernel,
—1
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where M(t/T) = diag{ M (t/T), uoM(t/T)}. Next, we also have
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where 3 = 0. Therefore
BilBh(t/T): %MZM(t/T)’YhH(t/T) +o (b2)
0

Next, note that we have the same rate for B~'D"(¢/T) = 0,(b?). Therefore,

2 "
G pa™ (t/T)
0

B(0; — 0}') - +op(b?) = M~ (t/T)B™1r"(t/T).
The proof is then complete by multiplying throughout by v7T'b and applying Lemma A.4 to the right
hand side. o

To rigorously prove Proposition 2, we first, define
_ h h
Lty o ,ta,ts = th,ith,z"Xt27th2,j'Xt37ayt3Xt4,th4v

where Xy, , refers to the ath element of X;,, and we require the following conditions:

Assumption V: Let R = 2(1 + ¢) > 2 for p > 0, then (i) for all 7,5,¢,7' = 1,...,m and s,t = 1,..., T,
1 X6, X5 Xo 0 X jrl8(1400) < 00 and || X i Xy jv00}[(140) < 00; and (i) For t1,t2,t3,ts € Z, {Z4, 15 45,04} 1
T-mixing with coefficients given by 7, = O(k~%) and 6 > 5(R — 1)/(R — 2).



We remark that the moment assumptions are similar to assumption T2 of Cai et al. (2022) albeit
stronger as the local projection error is serially correlated and not independent of the regressors. Hence,
the expectations of their products need to be adequately controlled. Additionally, note that since X; can
include an intercept term, the above condition can be reduced to simpler combinations of X; and . In
fact, Assumptions A.3 and A.4 can be nested in here. The assumption on mixing is not restrictive and
can be replaced with geometric mixing. We now begin with the proof:

Proof of Proposition 2

Firstly,

Qn(t/T) =W (t/T)
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We start with the first term which represents the estimation error of V . We can further decompose this

into the following three terms

T—hT—h T—hT—-h
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= 1t + Qo + Qe
Next, from the proof of Proposition 1
A~ —_ 1 1" _
A= =M [ﬁ’it + 50 H2 My } +0p ((Tb) V24 b2) .

where we have labeled M (t/T) = M, for convenience and similarly for 7“61715 and %h”. Next, we focus on

the (i, 7)th element of 11, and its leading term is given by
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We analyze the term related to the stochastic error (ignoring the —1 multiple):
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where my 45 is the (a,b)th element of M. Since m is finite, we focus on a specific (a,b) pair for
simplicity (i.e. ignore the summation over a and b).

We consider the following cases:
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= Q(l) + Q(Qa) + Q(%) + Q(QC) + Q(?’)

We start with Q1)

T—h
1
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where the expectation exists via Cauchy—Schwarz inequality and Assumption V above. Hence, Q) —P 0.
We next focus on Q) as the approach for the other terms are similar. We start with the second

moment and for cleaner notation, we re-define the indices as such:

B(10) =7

) Y iy tbisg thiey sy Bsa thiss thiss si sy (a,0) s (a,b)
517852753 54755756 =k,
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Without loss of generality, consider the case s; < ... < sg, and let d; represent the first largest distance

among As,i1 = S,41 — S, for z = 1,...,5. Similar to the strategy in Atak et al. (2025), we consider the



subcase where d; = Asy (i.e. the first gap is the largest), then by an application of Lemma A.1 and
Assumption V, we have for a ¢ > 0 and R = 2(1 + 9):

(@)« & S b

s1 z]E[X82,szzX83 JV  XsyaXsy 2X85,bV Xsa,JVsﬁ]
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Even though we do not have an m.d.s. assumption on the error terms, we can show (although tediously)
that the O; is o(1) through repeated use of the mixing inequality. For O note that by Assumption V,

| Xs1,0Xs1,i||r is bounded and by repeated Hélder’s inequality we have:

h h h h
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Next, ks, .56 = O(1/65) - K(S%F_bt), and hence for some constants ci,co > 0
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where the second inequality follows from the condition on the mixing coefficient.

This can be generalized to the other subcases where d; = As,41 for z = 2,...;5. For example, when
z = 2, the analogous summation for Oy can be written as:
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which can also be shown to be O(1/(Tb)?) as previously.

Hence, we conclude that 1, = 0p(1). For Qg in light of the result in Lemma A.3, we just need to
show that F(022,) — 0 to invoke Chebyshev’s inequality. The proof strategy for this is repetitive and very
similar to our derivation of E((Q())?). O

Appendix A.2. High-dimensional

Before starting the proof of Theorem 1, we require the following lemmas (whose proofs are postponed to

Appendix B):



Lemma A.5. Under the conditions of Theorem 1, with probability at least 1 — Q% where Q7 — 0 as

T — 0o, we have for any v € R2™=Y) such that the |{j : v; # 0} < sr,
2 o 5T 2
K vll3 < ﬂHZtUHKtv
where k* >0 and || - ||k,, Z¢ and Ky are defined in Assumption H.2(ii).
Lemma A.6. Under the conditions of Theorem 1,

(i) we have

1 = s—t 8m
P NS K (2= s et <elog [ 2E) ) >1-6
(133‘2(12%37{1—1) VTb ; ( Tb )Z %) =€ Og( 81 >> =

where Zs 1 ; is the jth element of Zs = (2], 2] (s —t)/Tb) 7, €& refers to either eys or v, 0 < § < 1

and ¢ > 0;

(ii) Furthermore,

1 Th s—1 hG)T RHT [S—1
L - (i) _ oh(i 7 0h(i - -
Tb Z K< Th ) <Ys agy  Zs —bayy < Th )Zs> Zs,t,]

s=1
1/
mr log(24my /d2) mr
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where Ys(i) s a placeholder that refers to either Ys(l) = €5 OT YS(Q) = Ys+n and a;’th(l) refers to the

P< max
1<5<2(m~1)

<c

true parameters in the unpenalized regression model in (14) for j = 0,1 while a;’f@) refers to the
corresponding parameters in (15). Here, = ((¢* + 1)R* —1)/(¢* + R* — 1) > 2 and R* > 2.

Lemma A.7. Let éf(z

) € R2n1=1) be the local linear Lasso estimator to (14) if i = 1 and to (15) ifi = 2.
Then we have, under the conditions of Theorem 1, and with probability at least 1 — Qp — do:

5h(4) 0,h(i) C —1/2 jh (%) 0,h(%) ¢

160 07"V < /F, and (T8 A2 — 6O, < = vAT,

where 0§’h(i) refers to the corresponding true parameters, k is from assumption H.2(ii), X is from Assump-

tion H.1(ii), and Qr is from Assumption H.2.

Note that we will let both 6; = 6;(T) — 0 and d2 = 62(T") — 0 as T' — oo slowly. This can be done
for example by setting it to be 1/log(T).
Proof of Theorem 1

Our proof strategy is similar to Belloni et al. (2014) and Hecq et al. (2023) but is more complicated due
to the nonparametric estimation. Recall that our model is (11) and the post-double selection estimator

is given in (16).



We first begin with some definitions. Let &5, = (s, ((s —t)/Th)es) " and Zs; = (2], ((s —t)/Tb)z] ).
We obtain the data matrices ; and Z; by stacking the vectors over the time sample which results in a
(T'—h) x2 vector and (T'—h) x2(mp—1) matrix respectively. Let S be the index set of the variables selected
in the double selection procedure (i.e. I; UI3) and their gradient terms (the interaction with time). Then,
label the sub-matrix of selected variables (corresponding to the columns of Z; whose indices are in S) as
Z$. For an arbitrary matrix Z, denote the (weighted) projection matrix as PV (Z) = Z(Z"WZ)"1ZTW
and the (weighted) annihilator matrix MW (Z) = I — PW(Z). Note that MW (-) is no longer symmetric,

but still idempotent. Construct the following 1 x (T" — h) vector:
A = T ET b R ME(Z8)8) 8 b K ME (25,

where € is a 2 x 1 vector with 1 in the first position and 0 in its second and K; is a (T — h) x (T — h)

diagonal matrix with {K((s —t)/(Tb))} =" as the diagonal elements.
Then our local linear (partially) partitioned regression estimator of the impulse response at time ¢ for

horizon h is given by:
o b2
VIb(B} = 1) = VTOAZi0" o + V"] + VT AiQi0"™ (t/T) + VTbAwr s

where 9", , = (9"(t/T)T, 69" (t/T)T)T, Q; is the stacked matrix of (g,(52)2, 2] (G52)?), 07(t/T) is
the second derivative of all the coefficients of the model, and r,; is the Taylor remainder. Rearranging

terms around,
. b2 "
VTb <ﬁt —ph— - At h(t/T)) = VTbA[Z0", , + V"] + VTbArsy = I+ VThrg,.

The remainder term is of smaller order (rs; = o(b?)) and thus we focus on the leading terms. We
have:

I =ef (8] KMR(Z7)8,/Th) &) KkM™(Z9) (200", + "] /T

=I;" =Ip

We start with Ip:
Ip =& K,MM(Z9) 20", /)NVTb + &) KMBH(ZE )" )NTb = Ipy + Ips.

Note that

el KyMEB(Z9) 20", /VTh
Iy — ; ’ (A.2)
(2x1) (dy o E)TKtMKt (Zts) Ztei—le,t/\/ﬁ

1-t T—h-t)T
..

where £ = (g1, ...,er_p) ", dt = ( Th > —75—) » and o denotes element-wise multiplication.



Now, for the reduced form equation,

ey = 00T (t/T)z, + 90/ OT (/1) (2=

b2 — 1.9 -
T )zs + 19 (t/T)( T ) Zs + Tst + €11, (A.3)

where 7 is again the o(b?) Taylor remainder. Plug (A.3) into (A.2). We focus on the first element since

the approach for the second element is the same:

(Tb) 2y 2] Ky MBS (28) 200" 4 + ] KeMEBe (29) 2,607, + ef KoM (27) 2,07, ]

= Ip11 +Ipi12 + Ip13.

where v, = (9T (¢t/T),09' VDT (t/T))T and 1, contains terms related to the second-order derivative and
the remainder which are smaller by an order of b2. Hence, we focus on the first and last terms. For Ipi;

by idempotence of Mt (.):
[Ipu| < VTOIM" (Z7) Ziye/VTO| k| M* (Z7) 266", /YT K, = VTb(Ip1a - Ipig),

where |[v]|r, = /v Kyv. Let v* be the solution to the unweighted noiseless problem min..., g for jes || Zevi—
Zyy||2. Furthermore, recall that I; is the index set of selected (level) terms from (14). Let IT to be index
set containing I; and their associated gradient terms. Note that I7 C S, then for conformable vectors v

we have ||MB(Z2 )|k, < |]MKt(Zt11*)v||Kt. By construction of the weighted annihilator matrix,

I . *
Ioua < M (201) Zon/VT0lie = win 120 = 20 ae VT < 1 i = 20 e VT
v:v;=0 for y

<N Ze(v — )|k, /VTh < f\/QA

where 4 is the Lasso estimator from (14). The penultimate inequality is due to the construction of ~*
and the last inequality is from Lemma A.7 which holds with probability 1 — §o — Q7.
For Ipi12, note that ) (t/T) = p"(t/T)9M (t/T) + 9" (t/T), then

Ih(t)T Y (/T) h(t)TY9W (t)T
0", = ~(/ ) = | ) = aj — (b} o). (A4)
b (t)T) byh(2)(/T) B ()T D (t/T)
So,

Ipiie < |M*(ZF) Zeay [NTO| g, + M5 (Z7) Zeye/VTO| 1, 107 | 1, -

The second term is Ip1,1 while the derivation of the first term is analogous to the derivation of Ipi1,1
with the main difference being the use of the index set I3 instead. Hence, the first term is upper bounded

by | Zi(a} — )|k, /vV/Tb where a} is the Lasso estimator of (15) which is bounded with high probability
by %,@A.



Next we consider Ipi3, by (A.4):
[Ipis| < |ef KeMEt (Z8) Zyall )NTO| + |ef KeMB(Z7) Z, (b 0 ) /VTH| = Ipiz + Ipis e

Since the monotonicity of the annihilator matrix does not necessarily carry over to the ¢; case, define

~ _ . h 2 . . - _ . 2
as = argmlna:ajzo for j¢S ||Ztat - ZtaHKt and likewise Ys = argmlnfy:'yjzo for j¢S HZt’Vt - Zt’YHKt' Then,

Ipisy = lef KiZi(as — af)/VTO| < ||as — af'|1llef KeZe/ VT .

Note that by Lemma A.5, with probability 1 — Q% we get |as — al||1 = ||as — al||]2 < \/%?ﬂHZt(dg -

aM)||k, < T rHZt(at al)||k, where al! is the lasso estimator. And by Lemma A.7 we conclude that

las — al|li < CspA. By Lemma A.6 with probability at least 1 — &1, |le] K¢Z;/VTh|loo < o7 where

sr=c mgilmﬂ. Hence, with high probability,

Ip131 < CsrsTA = or.

Similarly,
Ipis2 < Hb?H : HZtTKtel/\/ﬁH v —slly < or.
o0 o

Now we study Ips which has a similar expression:

; e KyM (Z9) v VT
D2 —
(2x1) (deoe) " KyM (Z9) V" /T

Again we focus on the first element:

(Tb) 2 2] KoM (Z8) o+ ] Ko MBS (28) P 4 o] Ko MEB (28) o)

= Ip21 + Ip22 + Ipas.
We start with Ipoq,
D21l = (s =) " 2] K" /VTH < |3s = lul| 2 K" /VTb|los < o1
For Ips3, we have:
Ipos = e K" /NTb — ef K;PX(Z2 )W [NTb = Ipas 1 + Ipag o
We start with the second term:

\Ipaso| < ley K: 22 (28T K, 28) 1 28T K" /V/Th|

<27 K" [VT0|loo - (27T Ko Z7 TH) |2l Z7 T Kver /VTbl|oo/ VT.
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Here we can apply Lemma A.6 twice since || Z7 T Kjv"|| oo < || Z, Kiv"||o0 and likewise for the term with e;.
Furthermore, with high probability, ||(ZT K;Z¢ /Tb)~!||2 is bounded. So |Ipazs| < Cs2st/V/Th, which
goes to 0 based on our rate assumptions.
Hence our leading term is Ipag3 1.
For I;,l we can apply the same approach to show that the leading term is given by (&) K;&;/Th)~ .
The procedure is repetitive and we thus omit it.
For the bias term, we write
b "h D> 0T -1 =T Ki (78 "
5AtQt9 (t)T) = 5l Iy 6 KkMP®H(Z7)Q/Th) 6 " (t/T).

~\~

Ip

For notational convenience, let Mt (Zf) = M&t, Dy = diag(ds ;) where d; = 55, then & = [5 Dg]

and Q) = [ D?c D2 z] The matrix expression is then given as

1 e K,ME e D2e e KyME D2

Ip=—
Tb | (De)TK,ME D% (De)T KyM&e D22

We focus on the (1,1) block. Since M&t = I — PKt we have

L 7 Kt 12 [ U o\ (L os\T e s (L (T 2
T5E KyM*D e =ge KiD% — | mpe KiZ, ﬁ(Zt) K Z; ﬁ(Zt) K;D% | .

By Lemma A.2, ﬁsTKtD% = paFE[e?] + 0,(1). Let the variables selected in S be z, then the second
term converges to puoE(e28)E(28 28 ) E(25 ;). The derivation for (1,2) is similar. For the (2,1) and
(2,2) block, they converges to 0 since pus = 0 given the symmetric kernels. As explained above the leading

-1
order of Iy~ converges to

E(c7) 0
0 p2B(ef)
Therefore, the entire bias term is O(b?).
Finally, we can then apply a variant of Lemma A.4 to Ip23 1 to obtain our result. O
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Appendix B. Proofs of Lemmas

Proof of Lemma A.2 We focus on j = 0, as the extension to j > 0 is similar.

T—h T—h
E|\T7'Y XX/ key| =T""> M(t/T)ksy +o(1) (by Lipschitzness of M(-))
s=1 s=1
=M(t/T) /K(u)du +o(1) (by Riemann sum approximation).
—_——

=1
Note that the second term is o(1) because it is smaller by an order of b. For variance, consider the (4, j)

element of Sy:

T—h
Var([So(t/T))uz) = (Tb) 2 ; Var(XyXs;) K <ST_bt>

arp) 2 Y C’ov( WX (STb ), Xl,Xl]K(lT_bt)>.

1<s<I<T—h

For the first term,

Tzhvm« Xy X)) K? ( Tbt> < B[(XyuXy;)?] Z K? (S — t) o(1) =0 (T1b> :

s=1

where we have again used the Lipschitz condition and the Riemann sum approximation to get [ K 2(u)du <

C < oo for some C > 0. Next, let £k =1 — s, then the second term simplifies to

9 AT st s+k—t
(Tb)2 Z Z K< Th >K (Tb) - Cov (XSiXSjaXs—f—k,iXs—&-k,j)

s=1 k=1
T—h T—s—h B
2C s—t s+k—t\ £2
< R—1 .
< T SE_I K( T ) kg_l K <Tb )Tk (by Lemma A.1),

where R € (2,q/2]. Note that K((s — t)/Tb) is non-zero if and only if |s — t| < Tb, let S; represent the
set of these indices and notice that the cardinality of &; is O(T'h). Next, we use the finite bounds on the

kernels to arrive at
T s—h 1_272

o L WS g kTR =0/,

The final equality requires greater exposition. By assumption A.3, 7, = O(k~%) where ¢ > (¢—2)/(¢—4)

and ¢ > 4. For summability, we require 4,01:2:2
occurs when R = ¢/2, hence ¢ needs to satisfy ¢ > 7, which is guaranteed by assumption A.3(i ) Hence
the infinite sum converges. Therefore, we conclude that Var([So(t/T)]q,5) = o(1) and we get our result
for the first part. For the second result on b~/ D}“‘(t/ T), the steps are almost exactly the same but with

the additional consideration that Qgt = o(b?). O

12



Proof of Lemma A.3 Since we have a block diagonal setup, we focus on each block individually. Recall
that 7"(¢/T) = (rft/T)7,r2(@t/T)")T and T;,(t/T) = COU(XtVZZ,Xt+jVZL+j). Additionally, we define
Lsin=T(s/T,1/T) = Covp (X, vh lel) Then,

T—h
ToVar(rg(t/T)) =T 'Y Ton(s/TVk2, +2T7'0 > Tynksikie =1+ I,
s=1 1<s<I<T—h

Likewise, by Lipschitz continuity and the Riemann sum approximation we have
I = I’Qh(t/T)/KZ(u)du + o(1).

Moving on to the covariances, we can capture pairs of indices that are asymptotically ’close’. Consider
a sequence gr — oo such that gr/(Th) — 0 and g7/vT — 0. We consider the following index sets:
©1={(s,1):1<s—1<gpforl<s<l<T-—h}and Oy contains the pairs of indices (s,1) that obey

1<s<1<T-—hbut are not in ©1. Then, we have

Iy=2T"" Z U nks ke + 27710 Z U nksikis = Io1 + Ioa.
(8,1)691 (S,l)€@2

We focus on Izs. Consider the (4, j) element of I'y; 5, then we have

[Igg](iﬂ-) = QT_lb Z COU(XSZ'U?, leVlh)ks,tk‘u
1<s<I<T—h
l—s>gr

T—-h T—-h—k

= 2T_1b Z Z Cov (XsiygaX(s+k)jV£+k) ks,tks—i-k,t
k’—gT+1 s=1
T —k

<271 Z COTk Z ks tkstkt, (B.1)
k=g7+1

where we have applied Lemma A.1 with some Cy > 0. Next, we use the boundedness of the kernel to get

kst < C1/b for some Cy > 0, and T— 1ZT h= kk <T- ET hkstSCg. This yields

-1
CZ/M <C- 1T(“>:o(1)
k=gr+1
where we have used assumption A.3 for the first inequality and an integral bound for the second. Here,
a = go*g % and since p* > % by construction, we have ¢ > 1 and thus the sum converges to 0 as

gr — OQ.

13



Next, for the (i, j) element of I5;:

[121](i,j) =27 Z COU(XSngaleVlh)ksikl,t

1<s<I<T—h
1<l—s<gr

T—h—1
=277 > Y Cov(Xav], Xijv kst
s=1 1<l-s<gr

T—h—1
1,2 2 h h
=277 > k2, ). Cou(Xuvl, Xiv')
s=1 1<l—s<gr
T—h—1

+2770° Y > Cov(Xgvl, X' (ksahuy — k2,)

s=1 1<l-s<grp

= Io11 + I219.

Note that as T — oo, we have Io1; — 2 [ K%(u)du > 1 [Crn(t/T)] i j)- Next, notice that by the Lipschitz

< L}|5%E| < L& then

requirement on the kernel, |k;; — ks, s

T—h—1 00 2
Io1] < LgrT 207" > ki {Z \Trn(t/T)) g + gTb} =0 (% + g;) = o(1)
s=1 k=1

where we have used Lemma A.1 to yield > ;2 |[Tx n(t/T)] ;)| = O(1), and the Riemann sum approxima-
tion for ks ;. The o(1) comes from the construction of gr. Therefore, [I21](; ;) — 2v0 D51 [Trn(t/T)] ¢ j)-

Together with the result for I; above, we conclude that

ToVar(rh(t/T)) — vy {ro,h(t/T) +2) rk,h(t/T)} = v (t/T).
k=1

The same steps can be taken to show that
ToVar(b= 2 (t/T)) — 1o, (t/T) and ThbCouv(ri(t/T), b= 1ri(t/T)) — 11 (t/T) = O(mxm)s

since 11 = [uK?(u)du = 0 due to symmetry. O
Proof of Lemma A.4
Before proceeding, we reproduce the necessary central limit theorem by Neumann (2013) here:

Theorem 2.1 of Neumann (2013) Let ({74)i=1,..7, T € N be a triangular array of random variables

-----

with E[ér+] =0 and Zle E[¢2,] < ¢ for all T,t and some ¢y < co. Assume that as T — oo, we have

O'% = Var(gT,l + ...+ gT,T) — (1'2 = [O’ oo) (Bz)
and
T
ZE[g%vt1{|§T,t|>€}] —0 (B.3)
t=1

14



for all € > 0. Next, assume that there exists a summable sequence (73 )ren such that for all u € N and all
indices 1 < 51 <59 < ... < 8y < Sy + k=71 < jo <T, the following covariances are upper-bounded as

such: for all measurable functions g : R* — R with ||g|lcc = supzeru|g(z)| <1,

|CO’U(g(§T751, ey §T75u)€T,Su7§Taj1)| < (E[g%,su] + E[g%,jl] + T_1>77€ (B'4)

and
1Cov(g(En,s1s s €T50) €051 6150) | < (EIET 5] + El6F 5] + T~ 7. (B.5)
Then we conclude that
&r1+ ...+ & -4 N(0,07).

O
The proof of Lemma A.4 therefore involves verifying the 4 conditions in (B.2)-(B.5). Note that we

can rewrite

1 = s—t Xs
T/ThB " _ T h -
v VITRB r"(t/T) = v kZV5K< > ,
Th s=1 Tb (%) Xs
| ——
EZs,t
where we have pre-multiplied the vector by a conformable unit vector v to apply Cramer-Wold. Note
that E[vT ST;Ih VK (558)Z,4] = 0 by exogeneity.
For (B.2), (B.2) is guaranteed by the existence of the long-run variance in Lemma A.1.

Next to verify (B.3), we will show that

vTZS,tvg

VTb

Note that this is easy to verify given our moment conditions of X, and v/

VTb

2
1 =0.
(kL >e}]

’UTZS,{UQ

VTh

B B |[1T 2ot (f)H 1
’UT ’Uh = - ’UT ’Uh
(|22 > | VTb € (R TP

R—2
UTZS,tvg 2 |vTZS,tv§/\/Tb|
< F 1 oT 2z, oh
VTb € U= 1>

B R—2
w1 Zg 0l R <|1/\/Tb]>
€

<FkE
= Tb
_ TibTb—(R—2)/2€—(R_2)E[|UTZs,tU£L|R]’

where R = pq/(p + ¢) from assumption A.3. By Hélder’s inequality:
Ellv Zsa 1] < V21511 Zs|§ < C < 00

15



where the bound comes from their moment conditions. Therefore,

%K(S_t)E v Zu (Ih) D2 C S sty
vTZSY véb T (R—2) T}
p— Th VTb (== >} ef=2)  Th & Th

= O((T6)~F21%) = o),

since R > 2.

Next, we need only to verify (B.4) since (B.5) follows similarly but relying on assumption A.3(ii).
From Theorem 2.1 of Neumann (2013), we require the following notation: for any u € N, the indices
1<s1<s83<...<8y,<8y+k<s,+k <T—handg:R*— R with sup,cp« [|g(v)]| < 1. Next, define

the following notations:

YSuyt _g(v ZSl tVsl/V Th UTZSQ tVs /V y U Zsu tV /v ) TZSu, Vs,

T h
Zsu—l—k,t = Zsu—l—k,tysu+k7

Qyy,, .| is the quantile function of |V, [, G|z is the generalized inverse of z — foz Q‘ZSHM’H(x)d:I:, the

su-th,t]

information set F™ = O'(Zsuytljg'u, Zsufl,t’jgu—p Zsu72,tV§u_2a ...), and the Lq-mixingale type coefficient

YFo, Zsurkit) = | ElZsy+kt|F2u] — ElZsy+k.4]|11. Hence, our equivalent of (B.4) is given by:

9 (Y FE Zyt,t)/2
o |COU (Vi s Zuy k)| < / Qv 10 Gl ooy (@)

<7

2 ||Zsu+k,t||1
= 7Tp 0 Lacn (P Zayin0) /2 Qe i) © G120y 41 (@) d
1 R—2 1Zs0+k,tll1 - 1/(R-1)
S 71 o0 Zowted) 71 /0 QY. a] © G124, 430 (0]l
1/(R-1)

IN
|

C *g:? 1/R
182 ([ o) ™ ([ hcson)

c R 2

Tb Tk o HYSuyt||R”ZSu+k tHR

We discuss this derivation in detail here. The first inequality is due to the covariance inequality (Propo-

sition 5) of Dedecker and Doukhan (2003). For the second inequality, note that

Y F2%s Zsutht) S NEZ skt F2o I+ 1B Z skt I < 201 Zsy el

by the triangle inequality, and the following inequality is valid by Jensen’s inequality and the law of

iterated expectations for ||E[Z el < 112 Zsutr il < 12 The third

16



. . . . . R_2 1 _ .
inequality follows from Holder’s inequality for = + z= = I

1 Zsy+k,ell1
2 /0 Lo (P Zayin0) /2 Qi) © G120y 41 (@) d

R—2 1
V(F2 Zsy+k,t) /2 R-1 1Zsy+k,elln o1 R-1
S 2 /0 1d$ /0 [Q‘Ysu,t| ¢} G\Zsu+k,t|(x)] d.%' .

The first term integrates to the upper limit and we note that the relations (2.2.13) and (2.2.18) in
Dedecker et al. (2007) imply that the L;- mixingale coefficient is smaller than the 7-mixing coefficient.
For the second term, it follows from a change of variables where we set x = foy Qyy,, ,|(e)de such that
du/dy = Qyy,,,|(y), and at the upper limit of the integral (||Zs,+x.[[1) we have y = 1. Additionally,
by construction of G, we have Gz, ., ( I Qly,, .|(e)de) = y. Subsequently, we apply Hélder’s inequality

again to split the second term. The final equality follows from the property of the quantile function:

1 1
fO Q&uﬂ(y)dy - E|YS]§¢’ and fo QR (y)dy = E|Z§L+k7t|-

IZSu"rk,tl
Next, recall that sup,cg« ||g(v)]| < 1, then

Ysutllr < o2

sutVh, | = 0(1),
where we have shown this bound earlier in the derivation of condition (B.3). The same can be said for
||Zsu+kgl|22. Then by assumption A.3, we have 77 = O(k™¢") where ¢* > (R—1)/(R—2) so ¢*- Z=2 > 1
and TZ "1 is summable and (B.4) is satisfied. The approach for (B.5) is more convenient because the first
term in the covariance is given solely by ¢(-) which is uniformly bounded by 1 and therefore the quantile
function will also be bounded by 1. With this observation, we can show that it will be O((k' — k)~%/Tb)
where @ > 1 is from assumption A.3(ii). The conditions are therefore satisfied and we can appeal to the
central limit theorem. d
Proof of Lemma A.5

The proof relies on assumption H.2(i) and the proof strategy follows that of Lemma A.1 in Hecq et al.
(2023). O
Proof of Lemma A.6

We start with part (i). Since {Zs, e} } is 7-mixing, by Theorem 3.1 of Babii et al. (2024), there exists

constants cp, ca > 0 such that we get

1 s—1
P — STK (20 e
(1<jg%§1—1) \/ij ; < Th > Zs,t,jCs
where BZ = max; Y., >, Cov(Zsy €%, Z 1 5¢5). By Lemma C.2 of Chen and Maung (2025), B% = O(Tb).

(Tb)1—+/2 02u2(Tb)>

+ 8m7 exp (— jo2
T

> u> < 2cimy

Next we invert the probability, so that for any d; € (0, 1),
(Tb)l—n/2

01
2c1m < —,
e uk -2
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and

mr
>C | ——————— .
v 1<51<Tb>~/z—1>

Given our assumptions on k, it is possible to show that it is > 2, hence this fraction goes to 0 as Th — oo.

The dominating order comes from the second term because B2 = O(Tb):

which concludes the proof of part (i).

For part (ii),

T—h
1 s—t . : . s —1t
il (@) _ oh(D)T _ 5 oh(i)T o
P<1§j§m2%§m—1) Th SZ:; K < Th > (YS Gop % = bayy (Tb > Zs) Zs,t.
mT—l

< 2(2 )P< 1T§—:"K <s—t> (Y(") kT, ) . u)
> ~ Th i Tb s 0,s s 5,8,9

=e1s OT egs

12 (st h(i) h(i) ny (5—t\) '
+ ‘ P< TI)ZK< T ) (agzsl —agzt ! —ba?:t ! ( Tb >) Zs Zst,j

ERs,t,i (Zs)

>u> =P+ P.

By a second order Taylor expansion, R ;(zs) contains b%2. Furthermore, due to sparsity, we can show
via Markov’s inequality that the Py is of order O(mypsrb?). By assumption H.1(i) spb? oc (Th)~'/2 which
yields the third term in the probability in part (i) of Lemma A.6 (i.e. this part is due to the local linear
approximation).

For Py, we can repeat the process by applying Theorem 3.1 of Babii et al. (2024) again. The rates are
different now since we have 1/Tb instead of 1/v/Tb as was the case in part (i) of the proof.

The proof is complete by inverting the probability, this time by setting the rates to be < dy/3 for
some Jy € (0,1). O
Proof of Lemma A.7

For ease of notation, we focus on the estimator from (15) since the derivation carries over to the case
with (14).

@ _ (vh(2)'|' ba?(Q)T

p )T and the true value for the

First, define the difference between the estimator 9?

level and gradient terms as:

C_Lh(2) 0,h(2) : o h(2) oh(2)
djr = agy 5 —agy,; and djp = bay ;5 — a5,

for j=1,...,mp—1.
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It can then be shown that the local linear lasso error satisfies the following constraint:

mp—1 mr—1 5(2),T 5(2),T
maxq Y dul, Y dplp <D Z |dje| + Z el ]
J=s(2),r+1 J=s(2),r+1

where b = max{)\SZ)/Ag), )\52)/)\&2)} + 7 and 77 > 0. This was shown by Li et al. (2015) for the varying-
coefficient model and Chen and Maung (2023) for nonparametric time-varying forecast combinations.
Hence we omit its derivation for brevity.

Define d; = (dy4, ...,me,l,t,a.llt, ...,me,Lt)T, then a key implication of this result is the following

cone constraint:

s(2),T -s(2),T s(2),T s(2),T s(2),T
ldells = 1527 11+ 11T < 1@+ b(1 DT 10) = (1 + )11

s(2),T

where d, =@

refers to the difference of the non-zero coefficients and d,’ is the complement of that

index set.

Next, by definition of the lasso estimator (as a minimizer) to (15) we have:

(@) " =208, e A0 Nao 11 +067 a3 10 < (70) 7 1" +2087 " e A gy 114257 a7 .
where 3" is the vector of {ys4n}, and Z; and || - ||k, are defined in assumption H.2(ii). Then, note that
" — 28N, — " + 267", = 12000 = 07", — 20" — 267" )T K261 — 67",
hence together with assumption H.1(ii) )\gz), )\52) x A

(@) 120 — 07" Ik, < 2T0) 7 (" — 267" TE 208 = 02"+ N1 |y — 1167 ).
Note that we have

(" — 207" K287 — 07" < 120 Ko = 287" el - 67"

Define the event A = {(T0)7Z K,(y" — Z,6] )||C>Q < A}. Note that by Lemma A.6, we have

P(Ar) > 1 — d3. We will now assume that Ar holds and so:
(TH) M| Zede |, < 2Mdellr + Aldells, (B.6)

where we have used the reverse triangle inequality. By the cone constraint, we have 3\||d:[[1 < 3(1 +

b)A||d;®"||;. Then by the restricted eigenvalue assumption in H.2(ii), we have
klldell3 < (T0) 7| Zedy | %,
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which holds with probability 1 — Q7. Hence

mlldell3 < 31+ DA™ (|1 < 3(1+ B)A\/502) 7l di|2-

So, we have ||d;||2 < w#ST)\‘
Finally from (B.6), (Tb)~Y?|| Zid¢||x, < EM\\/57.

— K
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